Optimization Techniques for Multiple Centrality Computations
نویسندگان
چکیده
A broad range of data has a graph structure, such as the Web link structure, online social networks, or online communities whose members rate each other (reputation systems) or rate items (recommender systems). In these contexts, a common task is to identify important vertices in the graph, e.g., influential users in a social network or trustworthy users in a reputation system, by means of centrality measures. In such scenarios, several centrality computations take place at the same time, as we will explain. With centrality computation being expensive, performance is crucial. While optimization techniques for single centrality computations exist, little attention so far has gone into the computation of several centrality measures in combination. In this paper, we investigate how to efficiently compute several centrality measures at a time. We propose two new optimization techniques and demonstrate their usefulness both theoretically as well as experimentally on synthetic and on real-world data sets.
منابع مشابه
An Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering
The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...
متن کاملRegularizing graph centrality computations
Centrality metrics such as betweenness and closeness have been used to identify important nodes in a network. However, it takes days to months on a high-end workstation to compute the centrality of today’s networks. The main reasons are the size and the irregular structure of these networks. While today’s computing units excel at processing dense and regular data, their performance is questiona...
متن کاملVisualizing Multiple System Atrophy Studies Based on Collaboration Network and Centrality Indices in Web of Science Database
Introduction: Social network analysis is an analytical method based on graph theories that identifies relationships between individuals or factors to analyze the social structures resulted from those relationships. The objective of this study was to analyze co-authorship and co-word networks based on scientometric indicators and centrality measures in the studies on multiple atrophy system dise...
متن کاملAnalyzing Multiple Network Centralities with ViNCent
The analysis of multivariate networks is an important task in various application domains, such as social network analysis or biochemistry. In this paper, we address the interactive visual analysis of the results of centrality computations in context of networks. An important analytical aspect is to examine nodes according to specific centrality values and to compare them. We present a tool tha...
متن کاملVisualizing Multiple System Atrophy Studies Based on Collaboration Network and Centrality Indices in Web of Science Database
Introduction: Social network analysis is an analytical method based on graph theories that identifies relationships between individuals or factors to analyze the social structures resulted from those relationships. The objective of this study was to analyze co-authorship and co-word networks based on scientometric indicators and centrality measures in the studies on multiple atrophy system dise...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013